SUMMARY: Prostate cancer is the most common cancer in American men with the exclusion of skin cancer, and 1 in 9 men will be diagnosed with Prostate cancer during their lifetime. It is estimated that in the United States, about 268,490 new cases of Prostate cancer will be diagnosed in 2022 and 34,500 men will die of the disease. The development and progression of Prostate cancer is driven by androgens. Androgen Deprivation Therapy (ADT) or testosterone suppression has therefore been the cornerstone of treatment of advanced Prostate cancer and is the first treatment intervention. Approximately 10-20% of patients with advanced Prostate cancer will progress to Castration Resistant Prostate Cancer (CRPC) within five years during ADT, and over 80% of these patients will have metastatic disease at the time of CRPC diagnosis. The malignant transformation of prostatic epithelial cell as well as the development of CRPC has been attributed to deleterious alterations in a variety of genes including loss-of-function alterations in Homologous Recombination Repair (HRR) genes.
DNA damage is a common occurrence in daily life by UV light, ionizing radiation, replication errors, chemical agents, etc. This can result in single and double strand breaks in the DNA structure which must be repaired for cell survival. The two vital pathways for DNA repair in a normal cell are BRCA1/BRCA2 and PARP. BRCA1 and BRCA2 are tumor suppressor genes that recognize and repair double strand DNA breaks via Homologous Recombination Repair (HRR) pathway. Homologous Recombination is a type of genetic recombination, and is a DNA repair pathway utilized by cells to accurately repair DNA double-stranded breaks during the S and G2 phases of the cell cycle, and thereby maintain genomic integrity. Homologous Recombination Deficiency (HRD) is noted following mutation of genes involved in HR repair pathway. At least 15 genes are involved in the Homologous Recombination Repair (HRR) pathway including BRCA1, BRCA2, PALB2, CHEK2 and ATM genes. Mutations in these genes predispose an individual to develop malignant tumors. Mutations in BRCA1 and BRCA2 account for about 20-25% of hereditary breast cancers and about 5-10% of all breast cancers. They also account for 15% of ovarian cancers, in addition to other cancers such as Colon and Prostate. BRCA mutations can either be inherited (Germline) and present in all individual cells or can be acquired and occur exclusively in the tumor cells (Somatic). Somatic mutations account for a significant portion of overall BRCA1 and BRCA2 aberrations. Loss of BRCA function due to frequent somatic aberrations likely deregulates HR pathway, and other pathways then come in to play, which are less precise and error prone, resulting in the accumulation of additional mutations and chromosomal instability in the cell, with subsequent malignant transformation. Homologous Recombination Deficiency therefore indicates an important loss of DNA repair function.
The PARP (Poly ADP Ribose Polymerase), family of enzymes include, PARP1 and PARP2, and is a related enzymatic pathway that repairs single strand breaks in DNA. In a BRCA mutant, the cancer cell relies solely on PARP pathway for DNA repair to survive. PARP inhibitors trap PARP onto DNA at sites of single-strand breaks, preventing their repair and generating double-strand breaks that cannot be repaired accurately in tumors harboring defects in Homologous Recombination Repair pathway genes, such as BRCA1 or BRCA2 mutations, and this leads to cumulative DNA damage and tumor cell death. LYNPARZA® (Olaparib) is a first-in-class PARP inhibitor and blocks DNA damage response in tumors harboring a deficiency in Homologous Recombination Repair, as is noted in those with mutations such as BRCA1 and/or BRCA2. LYNPARZA® showed promising results in a Phase II trial (TOPARP), when given as monotherapy, in patients with BRCA1/2 or ATM gene-mutated mCRPC, who had received a prior Taxane-based chemotherapy, and at least one newer hormonal agent (ZYTIGA® or XTANDI®).
PROfound is a prospective, multicentre, randomized, open-label, Phase III trial in which the efficacy and safety of LYNPARZA® was compared with physician’s choice of either XTANDI® or ZYTIGA® in two groups of patients with mCRPC, who had progressed on prior treatment with new hormonal anticancer treatments, and had a qualifying tumor mutation in one of 15 genes involved in the Homologous Recombination Repair (HRR) pathway. Patients in Cohort A (N=245) had alterations in BRCA1, BRCA2 or ATM genes while those in Cohort B (N=142) had alterations in any one of 12 other genes known to be involved in DNA repair which included BRIP1, BARD1, CDK12, CHEK1, CHEK2, FANCL, PALB2, PPP2R2A, RAD51B, RAD51C, RAD51D or RAD54L. Patients were randomized 2:1 within each cohort to receive LYNPARZA® 300 mg orally BID or physician’s choice of XTANDI® 160 mg orally QD or ZYTIGA® 1000 mg orally QD along with Prednisone 5 mg orally BID. Patient characteristics were well-balanced between arms in each treatment group, median patient age was 68 years, approximately 25% of patients had de novo metastatic disease, about 65% of patients received prior Taxane therapy and more than 20% had received two lines of chemotherapy. Patients were allowed to cross over to LYNPARZA® upon progression. The Primary endpoint was radiographic Progression-Free Survival (rPFS) in Cohort A, assessed by Blinded Independent Central Review (BICR).
The authors had previously reported that in Cohort A, the median PFS was 7.4 months with LYNPARZA®, compared to 3.5 months in the control group (HR=0.34, P<0.0001). This represented a 66% greater delay in disease progression compared to hormonal therapy. The interim Overall Survival analysis in Cohort A showed that median OS was 18.5 months with LYNPARZA® compared to 15 months with control drug treatment (HR=0.64, P=0.0173). In Cohort A, the Objective Response Rate (ORR) was 33.3% with LYNPARZA® compared with 2.3% with control drug therapies (P<0.0001).
The authors in this publication reported the results of the prespecified Secondary endpoints, which included pain, Health-Related Quality of Life (HRQOL), symptomatic Skeletal-Related Events, and time to first opiate use for cancer-related pain in Cohort A group of patients. Pain was assessed with the Brief Pain Inventory-Short Form, and HRQOL was assessed with the Functional Assessment of Cancer Therapy-Prostate (FACT-P). Cohort A included 245 patients with alterations in BRCA1, BRCA2, or ATM genes, of whom 162 patients received the investigational agent LYNPARZA®, and 83 patients received control drug. The median duration of follow up at data cutoff was 6.2 months for all LYNPARZA® group patients and 3.5 months for the control group patients. The median time to pain progression was significantly longer with LYNPARZA® and was Not Reached in the LYNPARZA® group versus 9.92 months in the control group (HR=0.44; P=0.019). Pain interference scores were also significantly better in the LYNPARZA® group (difference in overall adjusted mean change from baseline score −0.85; nominal P=0.0004). Median time to progression of pain severity was Not Reached in either group. Among patients who had not used opiates at baseline (113 in the LYNPARZA® group, 58 in the control group), median time to first opiate use for cancer-related pain was 18.0 months in the LYNPARZA® group versus 7.5 months in the control group (HR=0.61; nominal P=0.044).
The proportion of patients with clinically meaningful improvement in FACT-P total score during treatment was higher for the LYNPARZA® group than the control group (10% versus 1% respectively; odds ratio=8.32; nominal P=0.0065). The median time to first symptomatic Skeletal-Related Event was not reached for either treatment group and the proportions of patients remaining free of symptomatic Skeletal-Related Events were 89.5% versus 77.1% at 6 months and 77.6% versus 53.6% at 12 months, in the LYNPARZA® and control groups respectively.
It was concluded that LYNPARZA® was associated with reduced pain burden and better-preserved HRQOL compared with the two control drugs, in patients with metastatic Castration-Resistant Prostate Cancer and Homologous Recombination Repair gene alterations, who had disease progression after a previous next-generation hormonal drug. The authors added that the study findings support the clinical benefit of improved radiographical Progression Free Survival and Overall Survival identified in PROfound trial.
Pain and health-related quality of life with olaparib versus physician’s choice of next-generation hormonal drug in patients with metastatic castration-resistant prostate cancer with homologous recombination repair gene alterations (PROfound): an open-label, randomised, phase 3 trial. Thiery-Vuillemin A, de Bono J, Hussain M, et al. The Lancet Oncology March 2022;23:393-405.