SUMMARY: Colorectal Cancer (CRC) is the third most common cancer diagnosed in both men and women in the United States. The American Cancer Society estimates that approximately 153,020 new cases of CRC were diagnosed in the United States in 2023 and about 52,550 patients died of the disease. The lifetime risk of developing CRC is about 1 in 23.
Approximately 15-25% of the patients with CRC present with metastatic disease at the time of diagnosis (synchronous metastases) and 50-60% of the patients with CRC will develop metastatic disease during the course of their illness. First line treatment of metastatic CRC includes Oxaliplatin or Irinotecan, in combination with a Fluoropyrimidine and Leucovorin (FOLFOX or FOLFIRI respectively), along with a VEGF targeting agent such as Bevacizumab or EGFR targeting agents such as Cetuximab and Panitumumab. Patients with Stage IV colorectal cancer are now routinely analyzed for extended RAS and BRAF mutations. KRAS mutations are predictive of resistance to EGFR targeted therapy. Patients who progress following these therapies are considered to have refractory disease. These patients sometimes are rechallenged with previously administered chemotherapeutic agents, but often receive STIVARGA® (Regorafenib), an oral multikinase inhibitor with antiangiogenic activity, or LONSURF® (a fixed dose combination of Trifluridine and Tipiracil). These therapies however have shown limited efficacy.
The KRAS (Kirsten rat sarcoma viral oncogene homologue) proto-oncogene encodes a protein that is a member of the small GTPase super family. The KRAS gene provides instructions for making the KRAS protein, which is a part of a signaling pathway known as the RAS/MAPK pathway. By relaying signals from outside the cell to the cell nucleus, the protein instructs the cell to grow, divide and differentiate. KRAS gene is in the Ras family of oncogenes, which also includes two other genes, HRAS and NRAS. When mutated, oncogenes have the potential to change normal cells cancerous. KRAS is the most frequently mutated oncogene in human cancers and are often associated with resistance to targeted therapies and poor outcomes. The KRAS G12C mutation occurs in approximately 12-15% of Non Small Cell Lung Cancers (NSCLC) and in 3-5% of colorectal cancers and other solid cancers. G12C is a single point mutation with a Glycine-to-Cysteine substitution at codon 12. This substitution favors the activated state of KRAS, amplifying signaling pathways that lead to oncogenesis. Currently, no targeted therapies driven by a positive-selection biomarker are approved specifically for the treatment of patients with KRAS-mutated colorectal cancer.
Sotorasib (LUMAKRAS®) is a small molecule that specifically and irreversibly inhibits KRAS G12C protein and traps KRAS G12C in the inactive GDP-bound state, thus blocking downstream proliferation and survival signaling. Unlike the efficacy of single-agent KRAS G12C inhibitors in Non Small Cell Lung Cancer with KRAS G12C mutation, KRAS G12C inhibition alone has limited activity in patients with colorectal cancer. This has been attributed to upstream reactivation of the Epidermal Growth Factor Receptor (EGFR) pathway resulting in treatment-induced resistance, following selective inhibition of KRAS G12C. However, dual KRAS G12C and EGFR blockade can overcome treatment resistance in patients with colorectal cancer with KRAS G12C mutation. In the CodeBreaK 101 Phase 1b trial involving patients with chemorefractory colorectal cancer with mutated KRAS G12C, the Response Rate was 30% with Sotorasib plus Panitumumab, as compared with 9.7% with Sotorasib monotherapy.
CodeBreaK 300 trial is an international, multicenter, open-label, randomized, active-controlled Phase III study, conducted to evaluate the efficacy and safety of two different doses of Sotorasib (960 mg and 240 mg) in combination with Panitumumab as compared with the investigator’s choice of standard-care therapy (Trifluridine-Tipiracil or Regorafenib) in patients with chemorefractory metastatic colorectal cancer with KRAS G12C mutation. A lower dose of Sotorasib 240 mg orally once daily was tested in this study because of the nonlinear pharmacokinetic properties of Sotorasib. A total of 160 patients were randomly assigned in a 1:1:1 ratio to receive Sotorasib 960 mg orally once daily plus Panitumumab 6 mg/kg IV every 2 weeks (the 960 mg Sotorasib/Panitumumab group; N=53), Sotorasib 240 mg orally once daily plus Panitumumab (the 240 mg Sotorasib/Panitumumab group; N=53), with each treatment cycle repeating every 28 days, or the investigator’s choice of standard of care therapy which could be either Trifluridine-Tipiracil 35 mg/m2 (up to a maximum of 80 mg per dose) orally twice daily on days 1-5 and days 8-12 every 28 days, or Regorafenib 160 mg orally once daily for the first 21 days of each 28-day cycle (N=54). Treatment continued until disease progression or unacceptable toxicities. The median age was 61 years and majority of patients had more than 2 or more lines of previous anti-cancer therapy. KRAS G12C mutation was confirmed by prospective central molecular testing. Randomization was stratified according to previous use of antiangiogenic therapy, the time from initial diagnosis of metastatic disease to randomization and ECOG-PS. The Primary end point was Progression Free Survival (PFS) as assessed by Blinded Independent Central Review (BICR). Key Secondary end points included Overall Survival (OS) and Objective Response Rate (ORR).
After a median follow up of 7.8 months, both Sotorasib combinations (960 mg and 240 mg) plus Panitumumab demonstrated significantly longer PFS compared to standard of care therapy. The median PFS was 5.6 months and 3.9 months in the 960 mg Sotorasib/Panitumumab and 240 mg Sotorasib/Panitumumab groups, respectively, as compared with 2.2 months in the standard of care group (HR for 960 mg group=0 49; P=0.006) (HR for 240 mg group=0.58; P=0.03). The improvement in PFS was observed across key subgroups, including tumor sideness/primary tumor location, prior lines of therapy, and the presence or absence of liver metastases. The Objective Response Rate was 26.4%, 5.7%, and 0% in the 960 mg Sotorasib/Panitumumab, 240 mg Sotorasib/Panitumumab, and standard of care groups, respectively. Overall survival data is immature. While this trial was not powered to compare the two Sotorasib/Panitumumab groups directly, the 960-mg dose appeared to yield more clinically significant benefits than the 240-mg dose, across all efficacy endpoints, without additional toxic effects. Grade 3 or higher treatment-related adverse events occurred in 35.8%, 30.2%, and 43.1% of patients, respectively. Skin-related toxic effects and hypomagnesemia were the most common adverse events observed with Sotorasib/Panitumumab.
It was concluded from this study that both doses of Sotorasib (960 mg and 240 mg) in combination with Panitumumab resulted in significantly longer Progression Free Survival and a higher incidence of Response Rate than standard treatment. Ongoing analysis and longer follow up will provide additional insights into Overall Survival outcomes.
Sotorasib plus Panitumumab in Refractory Colorectal Cancer with Mutated KRAS G12C. Fakih MG, Salvatore L, Esaki T, et al. N Engl J Med 2023;389:2125-2139.